the values of $\Delta U_{obsd}(Cu-N2)$ are significantly negative (Table IV). Qualitatively these observations may be explained as follows: The site symmetry of the cation is C_1 , i.e., there is no reason that the positions of the Cu atoms in the disordered molecules I and II are the same (Figure 1). If we assume that the transition I \rightleftharpoons II is accompanied by a shift δ of Cu approximately in the direction of O2, the following relationship may be obtained

$$\Delta U_{dis}(Cu-O2) = [\Delta d^{2}(Cu-O2) - (\Delta d(Cu-O2))^{2}] [1 + \delta/\Delta d(Cu-O2)]$$

$$\Delta U_{dis}(Cu-N2) = [\Delta d^{2}(Cu-N2) - (\Delta d(Cu-N2))^{2}] [1 - v/\Delta d(Cu-N2)]$$

By using observed values for $\Delta d,~(\Delta d),~\text{and}~\Delta U_{\text{obsd}} - 0.003~\text{Å}^2 \approx \Delta U_{\text{dis}},~\delta~\text{is calculated to be}~\sim 0.4~\text{Å}~\text{from}~\Delta U_{\text{obsd}}(\text{Cu-O2})~\text{and}~\sim 0.2~\text{Å}~\text{from}~\Delta U_{\text{obsd}}(\text{Cu-N2}).$ The two estimates do not agree very well but at least they have the same sign and order of magnitude.

A similar analysis for the dependence of $\Delta U_{obsd}(Cu-N_{eq})$ on $(\Delta d(Cu-N))$ for N1 and N2 does not give significant results because the value of $\Delta U_{dis}(Cu-N)$ estimated from $\Delta d(Cu-N)$ is $\sim\!0.005$ Ų, approximately the same as the root-mean-square standard deviation of $U_{obsd}(Cu-N)$ ($\sim\!0.004$ Ų).

Conclusion

The data sets [CuO3] to [CuO6] all pertain to [Cu^{II}-(bipy)₂ONO]NO₃ measured by diffractometry at 298, 165, 100, and 20 K. (\circledast in Figure 4). The site symmetry of Cu is C₁, the energy difference E between I and II (Figure 1) is \sim 150 cm⁻¹, and the population factor P therefore depends on T. As Figure 4 shows the corresponding data points nicely follow the regression curve. This indicates that the energy barrier between I and II is sufficiently small to allow equilibration and that the disorder, at least for this compound, is dynamic rather than static. For the data sets [Cu24] and [Cu25] pertaining to

[Cu^{II}phen₂CH₃COO]ClO₄ measured at 298 and 165 K the case for dynamic disorder is less convincing.

In summary, the variation in d(Cu-O) and $\Delta U_{\text{obsd}}(\text{Cu-O})$ may be largely explained in terms of a simple geometrical model for the automerization between the two forms of the $[\text{Cu}^{\text{II}}(\text{LL})_2 X]^+$ ion (I, II, Figure 1). This provides additional support to the potential energy curve and the underlying geometrical model of the pseudo-Jahn-Teller distortion. Deviations from this model are either due to its simplistic nature or to the limited accuracy of \mathbf{U}_{obsd} .

The present analysis is another example in a series of interpretations of ΔU_{obsd} values from routine structure determinations. Other studies were concerned with Jahn-Teller distortions of $Cu^{II}N_6$ and $Mn^{III}F_6$ coordination octahedra, 5b,16 with spin changes in $Fe^{III}S_6$ coordination octahedra 5c and with valence disorder in a binuclear $N_4Mn^{III}-(\mu\text{-}O)_2\text{-}Mn^{IV}N_4$ complex. 17 These studies show that for crystal structure analysis of coordination compounds done with average accuracy values of ΔU_{obsd} in the range 0.2–0.003 Ų are amenable to chemical interpretation. For compounds containing first-row atoms only, ΔU_{obsd} as low as 0.001 Ų may still be chemically meaningful, if accurate diffraction data to high scattering angle are interpreted in terms of multipole models of the molecular electron density function. 18

Acknowledgment. We appreciate the cooperation of Prof. C. J. Simmons and Prof. B. J. Hathaway in promptly providing unpublished data. We acknowledge the comments of a referee.

Supplementary Material Available: A table summarizing details of data collection and refinement (1 page). Ordering information is given on any current masthead page.

(18) Bürgi, H. B., in preparation.

Alkyne Ligands as Two-Electron Donors in Octahedral d⁶ Tungsten(0) Complexes: fac-W(CO)₃(dppe)(η^2 -HC \equiv CR) and W(CO)₂(dppe)(DMAC)₂

K. R. Birdwhistell, T. L. Tonker, and J. L. Templeton*

Contribution from the W. R. Kenan, Jr. Laboratory, Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514. Received July 3, 1986

Abstract: Three labile terminal alkyne adducts of tungsten(0), fac-W(CO)₃(dppe)(η^2 -HC \equiv CR) (dppe = Ph₂PCH₂CH₂PPh₂; R = H, n-Bu, and Ph) have been synthesized from fac-W(CO)₃(dppe)(acetone). Chemical and spectroscopic properties indicate that the alkyne ligand is weakly bound in these octahedral d⁶ monomers. Recognition of an unfavorable 2-center-4-electron repulsion between the filled alkyne π_{\perp} orbital and a filled metal d π orbital helps to rationalize the observed chemistry. Internal alkyl and aryl alkynes do not yield clean products under similar reaction conditions, but the electron poor ester substituted alkyne DMAC (DMAC = dimethylacetylenedicarboxylate) forms W(CO)₂(dppe)(DMAC)₂. A single-crystal X-ray study of this complex confirmed the trans alkyne-cis dicarbonyl geometry anticipated from spectroscopic data [space group $P\overline{1}$, a = 11.51 (1) Å, b = 18.90 (1) Å, c = 10.27 (1) Å, $\alpha = 102.74$ (6)°, $\beta = 107.90$ (8)°, $\gamma = 79.95$ (8)°, Z = 2, R = 0.035, $R_w = 0.047$ for 6000 unique data with $I > 3\sigma(I)$]. The two trans alkyne ligands are orthogonal to one another with each alkyne eclipsing one of the two P-W-C vectors of the equatorial W(CO)₂(dppe) unit. Dynamic ¹H NMR studies reveal a barrier of 17.7 kcal/mol for averaging the two ends of each DMAC ligand, presumably by an alkyne rotation process. The role of alkyne ester substituents in promoting $d\pi$ to π_{\parallel}^* backbonding and delocalizing π_{\perp} alkyne electrons away from $d\pi$ metal electron density is discussed. These results help to rationalize three general features of transition-metal alkyne chemistry: (i) two-electron donor DMAC analogues of metal-olefin complexes are common; (ii) d⁶ metal octahedra promote isomerization of terminal alkyne ligands to vinylidenes, and (iii) terminal and dialkyl alkyne ligands prefer to bind to high oxidation state metals having at least one vacant $d\pi$ orbital.

Numerous octahedral molybdenum and tungsten d⁴ monomers contain one¹ or two² tightly bound alkyne ligands. The d² con-

figuration is also well represented among octahedral molybdenum³ and tungsten⁴ complexes containing an alkyne ligand. Both of

⁽¹⁶⁾ Vedani, A. Ph.D. Thesis, University of Zürich, 1981.

^{(17) (}a) Stebler, M.; Ludi, A.; Bürgi, H. B. Inorg. Chem. 1986, 22, 4743.
(b) Stebler, M. Ph.D. Thesis, University of Bern, 1986.

these configurations allow the filled alkyne π_{\perp} orbital to encounter a vacant $d\pi$ orbital. Donation from the alkyne π_{\perp} orbital influences molecular structure and reactivity⁵ as well as spectroscopic properties in these complexes.6

Although six-coordinate d⁶ complexes serve as a paradigm for application of 18-electron guidelines, there are surprisingly few Group 6 d⁶ octahedra containing an alkyne ligand. Early work with molybdenum(0) and tungsten(0) alkyne derivatives was characterized by unusual stoichiometries. The synthesis, structure, and molecular orbital scheme reported for W-(CO)(RC₂R)₃ laid the foundation for much of the Group 6 work which has followed. Work with chromium has produced unusual stoichiometries¹⁰ as well as alkyne adducts corresponding to effective atomic number expectations: $Cr(CO)_5(\eta^2 - HC)$ $CCO_2Me)^{11}$ and $(\eta^6-C_6Me_6)Cr(CO)_2(\eta^2-PhC)=CPh)^{12}$ alkyne ligands in these last two d⁶ saturated complexes are labile, as are alkynes in related six-coordinate complexes of Mn(I)13 and Fe(II).¹⁴ Although the $d^6 (\pi - C_5H_5)Re(CO)_2(PhC_2Ph)$ complex recently reported resists alkyne substitution, the bound alkyne is one of the least geometrically perturbed from free PhC=CPh of any structurally characterized diphenylacetylene complex. 15

Our understanding of the physical and chemical properties of six-coordinate d⁶ complexes containing alkyne ligands is still minimal. How is the alkyne π_{\perp} electron pair accommodated when all three of the octahedral $d\pi$ orbitals are filled? Do the alkyne π_{\perp} electrons influence the orientational preference or the reactivity patterns of d⁶ L₅M(η^2 -RC=CR) complexes? Are five-coordinate geometries accessible for d⁶ configurations in order to provide a vacant metal orbital mate for the filled π_{\perp} alkyne orbital? The

(1) (a) Ricard, L.; Weiss, R.; Newton, W. E.; Chen, G. J.-J.; McDonald, J. W. J. Am. Chem. Soc. 1978, 100, 1318. (b) Allen, S. R.; Baker, P. K.; Barnes, S. G.; Green, M.; Trollope, L.; Manojlovic-Muir, L.; Muir, K. W. J. Chem. Soc., Dalton Trans. 1981, 873. (c) Davidson, J. L.; Vasapollo, G. J. Chem. Soc., Dalton Trans. 1985, 2239. (d) Alt, H. G. J. Organomet. Chem. 1977, 127, 349. (e) Umland, P.; Vahrenkamp, H. Chem. Ber. 1982, 115, 3580. (f) Winston, P. B.; Burgmayer, S. J. N.; Tonker, T. L.; Templeton, J. L. Organometallics 1986, 5, 1707. (g) Churchill, M. R.; Wasserman, H. J.; Holmes, S. J.; Schrock, R. R. Organometallics 1982, 1, 766. (h) Giando-

menico, C. M.; Lam, C. T.; Lippard, S. J. J. Am. Chem. Soc. 1982, 104, 1263.
(2) (a) McDonald, J. W.; Newton, W. E.; Creedy, C. T. C.; Corbin, J. L. J. Organomet. Chem. 1975, 92, C25. (b) Herrick, R. S.; Templeton, J. L. Organometallics 1982, 1, 842. (c) Davidson, J. L.; Green, M.; Stone, F. G. A.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1976, 738. (d) Watson, P. L.; Bergman, R. G. J. Am. Chem. Soc. 1980, 102, 2698. (e) Faller, J. W.; Murray, H. H. J. Organomet. Chem. 1979, 172, 171. (f) Mead, K. A.; Morgan, H.; Woodward, P. J. Chem. Soc., Dalton Trans. 1983, 271

(3) (a) Maatta, E. A.; Wentworth, R. A. D.; Newton, W. E.; McDonald, J. W.; Watt, G. D. J. Am. Chem. Soc. 1978, 100, 1320. (b) Newton, W. E.; McDonald, J. W.; Corbin, J. L.; Ricard, L.; Weiss, R. Inorg. Chem. 1980, 19, 1997. (c) Braterman, P. S.; Davidson, J. L.; Sharp, D. W. A. J. Chem. Soc., Dalton Trans. 1976, 241. (d) Howard, J. A. K.; Stansfield, R. F. D.;

Woodward, P. J. Chem. Soc., Dalton Trans. 1976, 246.
(4) (a) Bennett, M. A.; Boyd, I. W. J. Organomet. Chem. 1985, 290, 165.
(b) Templeton, J. L.; Ward, B. C.; Chen, G. J.-J.; McDonald, J. W.; Newton, W. E. Inorg. Chem. 1981, 20, 1248. (c) Morrow, J. R.; Tonker, T. L.; Templeton, J. L. Organometallics 1985, 4, 745. (d) Bokiy, N. G.; Gatilov, Yu. V.; Struchkov, Yu. T.; Ustynyuk, N. A. J. Organomet. Chem. 1973, 54, 213.

- (5) Herrick, R. S.; Leazer, D. M.; Templeton, J. L. Organometallics 1983, 2, 834,
- (6) Templeton, J. L.; Herrick, R. S.; Morrow, J. R. Organometallics 1984, 3, \$35.
- (7) Tate, D. P.; Augl, J. M. J. Am. Chem. Soc. 1963, 85, 2174.
 (8) Laine, R. M.; Moriarity, R. E.; Bau, R. J. Am. Chem. Soc. 1972, 94,
- (9) (a) Tate, D. P.; Augl, J. M.; Ritchey, W. M.; Ross, B. L.; Grasselli, J. G. J. Am. Chem. Soc. 1964, 86, 3261. (b) King, R. B. Inorg. Chem. 1968, 7, 1044.
- (10) Dotz, K. .; Mühlemeier, J. Angew. Chem., Int. Ed. Engl. 1982, 21, 929. (b) Wink, D. J.; Fox, J. R.; Cooper, N. J. J. Am. Chem. Soc. 1985, 107, 5012.
- (11) Berke, H.; Harter, P.; Huttner, G.; Zsolnai, L. Z. Naturfursch., B: Anorg. Chem., Org. Chem. 1981, 36B, 929.
 (12) Strohmeier, W.; Hellmann, H. Chem. Ber. 1965, 98, 1598.
- (13) Antonova, A. B.; Kolobova, N. E.; Petrovsky, P. V.; Lokshin, B. V.; Obezyuk, N. S. J. Organomet. Chem. 1977, 137, 55.
- (14) (a) Reger, D. L.; Coleman, C. J.; McElligott, P. J. J. Organomet. Chem. 1979, 171, 73. (b) Reger, D. L.; Belmore, K. A.; Mintz, E.; McElligott, P. J. Organometallics 1984, 3, 134.
- (15) Einstein, F. W. B.; Tyers, K. G.; Sutton, D. Organometallics 1985, 4, 489.

preparation and properties of fac-W(CO)₃(dppe)(η^2 -HC \equiv CR) [R = H (2a), Ph (2b), and n-Bu (2c)] and $W(CO)_2(dppe)$ - $(DMAC)_2$ (3) $[DMAC = MeO_2CC = CCO_2Me]$ address these

Experimental Section

Materials and Methods. All manipulations were performed under a dry nitrogen atmosphere by using standard Schlenk techniques. Methylene chloride was distilled from LiAlH₄; diethyl ether and tetrahydrofuran were distilled from sodium benzophenone ketyl and purged with nitrogen. All other solvents were purged with nitrogen and used without further purification. Tungsten and molybdenum hexacarbonyl and alkyne reagents were used as obtained from commercial sources. W-(CO)₄(dppe)¹⁶ and fac-W(CO)₃(dppe)(acetone)¹⁷ were prepared by literature methods.

Infrared spectra were recorded on a Beckman IR 4250 spectrometer and calibrated with a polystyrene standard. ¹H NMR spectra were recorded on a Varian XL-100 (100-MHz) or a Bruker WM 250 (250-MHz) spectrometer. ¹³C NMR (62.89-MHz) and ³¹P NMR (101.27-MHz) were also obtained on a Bruker WM 250 spectrometer. Variable temperature ¹H NMR were recorded on a Varian XL-100 by using a methanol thermometer located in the probe for temperature determination. All ³¹P spectra were ¹H decoupled. Chemical shifts were referenced to residual solvent protons for ¹H NMR, to the chemical shift of the solvent for ¹³C NMR, and to external phosphoric acid for ³¹P NMR. Electrochemical measurements were obtained on a Bioanalytical Systems Inc. Model CV-27 instrument by using dichloromethane solutions containing 0.2 M tetra-n-butylammonium perchlorate (TBAP) as supporting electrolyte. E(1/2) values $[(E_{\rm p,a}+E_{\rm p,c})/2]$ were recorded against a silver/silver chloride reference electrode. Ferrocene was used as an internal standard for potential calibration. All photolyses were carried out in a submersion type photolysis apparatus at 0 °C by using a Hanovia 750-W medium-pressure Hg arc lamp with a Pyrex filter and a continuous nitrogen purge.

fac-W(CO)₃(dppe)(HCCH) (2a). A 500-mL flask was charged with fac-W(CO)₃(dppe)(acetone) (2.76 mmol, 2.00 g) and 1 atm of acetylene (acetone stabilizer was removed by passing the acetylene gas through a -78 °C trap). Addition of 20 mL of toluene resulted in conversion to a dark yellow solution of fac-W(CO)3(dppe)(HCCH). The product was isolated as a yellow powder in 90% yield by filtering the toluene solution into 100 mL of hexanes and washing the yellowish orange powder which precipitated with pentanes (3 \times 30 mL): IR (thf) ν (CO) (cm⁻¹) 1961 s, 1888 s, 1852 s; IR (KBr) 1942 s, 1862 s, 1822 s; ¹H NMR (CD₂Cl₂) 8.06-7.82 (m, Ph), 5.78 (t, ${}^{3}J_{HP} = 4$ Hz, HC₂H), 2.60 (m, PCH₂CH₂P). Anal. Found (Calcd): C, 53.78 (53.79); H, 3.97 (3.78); W, 25.98 (26.56)

fac-W(CO)₃(dppe)(PhCCH) (2b). To fac-W(CO)₃(dppe)(acetone) (1.01 mmol, 0.73 g) was added a solution of PhC_2H (3.40 mmol, 0.35 g) in 10 mL of toluene. This mixture was stirred at room temperature until the reaction was complete as monitored by IR. The reaction solution was then cooled to 0 °C and filtered into 80 mL of dry hexanes to produce a pink, powdery solid. The solid was isolated, washed 3 × 30 mL of hexanes, and dried in vacuo (84% yield): IR (thf) ν (CO) (cm⁻¹) 1967 s, 1894 s, 1855 s; IR (KBr) 1961 s, 1890 s, 1835 s; ¹H NMR (benzene- d_6) δ 8.29–7.03 (m, Ph), 6.21 (t, ${}^3J_{\rm HP}$ = 12 Hz, ${}^2J_{\rm HW}$ = 6 Hz, PhC₂H), 2.68 (m, PCH₂CH₂P); ¹H NMR (CD₂Cl₂) δ 7.90–6.88 (m, Ph), 6.76 (t, ${}^{3}J_{HP} = 12$ Hz, PhC₂H), 2.68 (m, PCH₂CH₂P); ${}^{31}P{}^{1}H{}$ NMR (THF/10% benzene- d_{6}) δ 37.6 (s, ${}^{1}J_{PW} = 204$ Hz); ${}^{13}C$ NMR at 2 °C in the presence of PhC₂H (benzene- d_6) δ 221.8 (t, ${}^2J_{CP}$ = 8 Hz, CO trans to alkyne), 213.3 (dd, ${}^{2}J_{CP} = 26$, 9 Hz, 2 cis CO), 135.6–121.4 (Ph), 98.2 (d, ${}^{2}J_{CH} = 27 \text{ Hz}$, PhCCH), 88.7 (dt, ${}^{1}J_{CH} = 231 \text{ Hz}$, ${}^{2}J_{CP} = 10 \text{ Hz}$, PhCCH), 27.3 (tt, ${}^{1}J_{CH} = 126 \text{ Hz}$, ${}^{1}J_{CP} = 19 \text{ Hz}$, PCH₂CH₂P). Anal. Found (Calcd): C, 58.57 (57.84); H, 4.17 (3.94); W, 23.57 (23.93).

fac-W(CO)₃(dppe)(HCC(CH₂)₃CH₃) (2c). The preparation of 2c was analogous to that of 2a. 2c was isolated as a yellow powder in 70% yield: IR (toluene) ν (CO) (cm⁻¹) 1960 s, 1885 s, 1850 s; IR (KBr) 1945 s, 1860 s, 1818 s; ¹H NMR (CD₂Cl₂) δ 8.00–6.70 (m, Ph), 4.49 (tt, ³ J_{HP} = 11 Hz, ${}^{4}J_{HH}$ = 2 Hz, RC₂H), 2.66 (m, PCH₂CH₂P), 1.23 (m, -CH₂CH₂CH₂-), 0.82 (m, CH₃); ¹H NMR (benzene- d_6) δ 7.83-6.67 (m, Ph), 4.61 (tt, ${}^{3}J_{HP} = 10 \text{ Hz}$, ${}^{4}J_{HH} = 2 \text{ Hz}$, RC₂H), 2.69 (br t, ${}^{3}J_{HH} = 6 \text{ Hz}$, C=C-CH₂-CH₂Et), 2.14 (m, PCH₂CH₂P), 1.21 (br, m, C= $-CH_2CH_2-Et$), 0.77 (br, m, CH_2CH_3). Anal. Found (Calcd): C, 55.90 (56.17); H, 4.66 (4.58); W, 23.79 (24.57).

Reaction of 1-Hexyne with fac-W(CO)3(dppe)(THF). Addition of a solution of fac-W(CO)₃(dppe)(THF) (0.9 mmol) in 20 mL of THF to 1-hexyne (3.20 mmol) resulted in formation of a 1:1 mixture of fac-W-

(17) Schenk, W. A.; Müller, H. Chem. Ber. 1982, 115, 3618.

⁽¹⁶⁾ Grim, S. O.; Briggs, W. L.; Barth, R. C.; Tolman, C. A.; Jesson, J. P. Inorg. Chem. 1974, 13, 1095

Table I. Crystallographic Data for W(CO)₂(dppe)(DMAC)₂ (3)

θ limits $3^{\circ} < \theta < 28^{\circ}$ hemisphere colletd $+h\pm k\pm l$ no. of data 10359 no. of unique data used $(I > 3\sigma(I))$ no. of parameters 370 error in an observtn of unit wt 2.59 R 0.035	Table 1. Clystanograpme Data	101 W (CO)2(uppe)(DM11C)2 (S)
space group $P^{\overline{1}}$ cell parameters a, \mathring{A} $11.51 (1)$ b, \mathring{A} $18.90 (1)$ c, \mathring{A} $10.27 (1)$ a, \deg $102.74 (6)$ β, \deg $107.90 (8)$ γ, \deg $77.95 (8)$ V, \mathring{A}^3 2059.5 ρ (calcd), g/cm^3 1.62 Z cryst color radiatn (wavelength, \mathring{A}) $Mo \ Ka \ (0.71073)$ μ , absorptn coeff scan type $\omega/1.67\theta$ scan width $1.1 + 0.35 \tan \theta$ background $\theta \text{ limits}$ $3^\circ < \theta < 28^\circ$ hemisphere collctd $h^2 + h \pm k \pm l$ 10.50 m 10	formula	$WP_2O_{10}C_{40}H_{36}$. $^{1}/_2CH_2Cl_2$
cell parameters a, Å b, Å c, Å 11.51 (1) b, Å 18.90 (1) c, Å 10.27 (1) α , deg 102.74 (6) β , deg 107.90 (8) γ , deg	mol wt	964.94
a , \mathring{A} $11.51 (1)$ b , \mathring{A} $18.90 (1)$ c , \mathring{A} $10.27 (1)$ α , deg $102.74 (6)$ β , deg $107.90 (8)$ γ , deg $77.95 (8)$ γ , deg $77.95 (8)$ γ , deg $77.95 (8)$ γ , deg γ , γ . γ , deg γ . γ , deg γ . γ , deg γ . </td <td>space group</td> <td>$P\bar{1}$</td>	space group	$P\bar{1}$
b, Å 18.90 (1) c, Å 10.27 (1) α, deg 102.74 (6) β, deg 107.90 (8) γ, deg 77.95 (8) V , ų 2059.5 ρ (calcd), g/cm³ 1.62 Z 2 cryst color yellow radiatn (wavelength, Å) Mo Kα (0.71073) μ, absorptn coeff 32.4 cm⁻¹ scan type $\omega/1.67\theta$ scan width 1.1 + 0.35 tan θ background 25% of full scan width on both sides θ limits 3° < θ < 28° hemisphere collctd no. of data no. of unique data used (I > $3\sigma(I)$) no. of parameters around the service of the se	cell parameters	
c , Å 10.27 (1) α , deg 102.74 (6) β , deg 107.90 (8) γ , deg 77.95 (8) V , ų 2059.5 ρ (calcd), g/cm³ 1.62 Z 2 cryst color yellow radiatn (wavelength, Å) Mo $K\alpha$ (0.71073) μ , absorptn coeff 32.4 cm⁻¹ scan type $\omega/1.67\theta$ scan width $1.1 + 0.35$ tan θ background 25% of full scan width on both sides θ limits $3^{\circ} < \theta < 28^{\circ}$ hemisphere collctd $+h\pm k\pm l$ no. of data 10359 no. of unique data used ($I > 3\sigma(I)$) $3\sigma(I)$) no. of parameters 370 error in an observtn of unit wt 2.59 0.035	a, Å	11.51 (1)
$α$, deg $β$, deg 102.74 (6) $β$, deg 77.95 (8) $γ$, deg 77.95 (8) $γ$, $δ$ 3 2059.5 $ρ$ (calcd), g/cm^3 1.62 2 cryst color radiatn (wavelength, $δ$) $μ$, absorptn coeff $β$ 32.4 cm ⁻¹ scan type $β$ 4.67θ scan width $β$ 6.11 + 0.35 tan $β$ 7.12 tan $β$ 8.13 tan $β$ 9.14 tan $β$ 1.1 + 0.35 tan $β$ 1.2 tan width on both sides $β$ 2.5% of full scan width on both sides $β$ 3 con $β$ 4 con $β$ 5 full scan width on both sides $β$ 6.000 tan $β$ 6.000 tan $β$ 7.1 tan $β$ 7.2 tan $β$ 7.2 tan $β$ 8.3 tan $β$ 9.3 tan $β$ 9.4 tan $β$ 9.3	b, Å	18.90 (1)
$α$, deg $β$, deg 102.74 (6) $β$, deg 77.95 (8) $γ$, deg 77.95 (8) $γ$, $δ$ 3 2059.5 $ρ$ (calcd), g/cm^3 1.62 2 cryst color radiatn (wavelength, $δ$) $μ$, absorptn coeff $β$ 32.4 cm ⁻¹ scan type $β$ 4.67θ scan width $β$ 6.11 + 0.35 tan $β$ 7.12 tan $β$ 8.13 tan $β$ 9.14 tan $β$ 1.1 + 0.35 tan $β$ 1.2 tan width on both sides $β$ 2.5% of full scan width on both sides $β$ 3 con $β$ 4 con $β$ 5 full scan width on both sides $β$ 6.000 tan $β$ 6.000 tan $β$ 7.1 tan $β$ 7.2 tan $β$ 7.2 tan $β$ 8.3 tan $β$ 9.3 tan $β$ 9.4 tan $β$ 9.3	c, Å	10.27 (1)
β , deg 107.90 (8) γ , deg γ , deg 77.95 (8) γ , deg γ , deg 77.95 (8) γ , γ 2059.5 γ (calcd), γ 1.62 γ 2 γ 2 γ 2 γ 2 γ 3 γ 3 γ 3 γ 4 γ 4 γ 4 γ 4 γ 5 γ 6 γ 7 γ 9	α , deg	
γ , deg V , \mathring{A}^3 2059.5 ρ (calcd), g/cm ³ 1.62 Z 2 yellow radiatn (wavelength, \mathring{A}) Mo $K\alpha$ (0.71073) μ , absorptn coeff 32.4 cm ⁻¹ scan type ω /1.67 θ scan width 1.1 + 0.35 tan θ background 25% of full scan width on both sides θ limits 3° < θ < 28° hemisphere collctd θ limits 10359 no. of data 10359 no. of unique data used (I >		107.90 (8)
V , Å ³ ρ (calcd), g/cm ³ I 1.62 Z cryst color radiatn (wavelength, Å) μ , absorptn coeff scan type μ w/1.67 θ scan width μ 1.1 + 0.35 tan θ background μ limits μ 3° < θ < 28° μ hemisphere collctd μ 10359 μ 10359 μ 105 farameters μ 10359 μ 105 farameters μ 10359 μ 106 for μ 10359 μ 107 for μ 10359 μ 105 farameters μ 10359 μ 105 for μ 259 μ 269 for μ 279 for μ 289 for μ 289 for μ 280 for μ 39 for μ 30 for μ 39 for μ 39 for μ 30 for μ 30 for μ 39 for μ 30 for μ 39 for μ 30		77.95 (8)
cryst color yellow radiatn (wavelength, Å) Mo Kα (0.71073) 32.4 cm^{-1} scan type $\omega/1.67\theta$ scan width $1.1 + 0.35 \tan \theta$ background 25% of full scan width on both sides θ limits $3^{\circ} < \theta < 28^{\circ}$ hemisphere colletd $+h\pm k\pm l$ no. of data no. of unique data used $(I > 3\sigma(I))$ no. of parameters error in an observtn of unit wt 2.59 0.035	V , \mathbb{A}^3	
Z2cryst coloryellowradiatn (wavelength, Å)Mo Kα (0.71073)μ, absorptn coeff32.4 cm $^{-1}$ scan type $ω/1.67θ$ scan width1.1 + 0.35 tan $θ$ background25% of full scan width on both sides $θ$ limits $3° < θ < 28°$ hemisphere collctd $+h\pm k\pm l$ no. of data10359no. of unique data used ($I > 3σ(I)$)6000 $3σ(I)$)370or. of parameters370error in an observtn of unit wt2.590.035	ρ (calcd), g/cm ³	1.62
radiatn (wavelength, Å) Mo K α (0.71073) μ , absorptn coeff 32.4 cm ⁻¹ scan type $\omega/1.67\theta$ scan width 1.1 + 0.35 tan θ background 25% of full scan width on both sides θ limits 3° < θ < 28° hemisphere colletd $h\pm k\pm l$ no. of data 10359 no. of unique data used (I > 0.359 no. of parameters 370 error in an observtn of unit wt 0.359 0.035		2
radiatn (wavelength, Å) Mo $K\alpha$ (0.71073) μ , absorptn coeff scan type $\omega/1.67\theta$ scan width $0.11 \pm 0.35 \tan \theta$ background $0.11 \pm 0.35 \tan \theta$ background $0.11 \pm 0.35 \tan \theta$ beingth $0.11 \pm 0.35 \tan \theta$ beingth $0.11 \pm 0.35 \tan \theta$ beingth $0.11 \pm 0.35 \tan \theta$ both sides $0.11 \pm 0.35 \pm 0.35 \pm 0.35 \pm 0.35$ being the same simple standard size of $0.11 \pm 0.35 \pm 0.35 \pm 0.35$ by $0.035 \pm 0.35 \pm 0.35 \pm 0.35$ by $0.035 \pm 0.35 \pm 0.35 \pm 0.35$ by $0.035 \pm 0.35 \pm 0.35 \pm 0.35$	cryst color	yellow
μ , absorptn coeff scan type $\omega/1.67\theta$ scan width on both sides $\omega/1.6$		Mo Kα (0.71073)
scan width $1.1 + 0.35 \tan \theta$ background $25\% \text{ of full scan width on both sides}$ $\theta \text{ limits} \qquad 3^{\circ} < \theta < 28^{\circ}$ hemisphere colletd $+h\pm k\pm l$ no. of data 10359 no. of unique data used $(I > 3\sigma(I))$ no. of parameters 370 error in an observtn of unit wt 2.59 R 0.035		32.4 cm ⁻¹
background 25% of full scan width on both sides θ limits 3° < θ < 28° hemisphere colletd $h \pm h \pm k \pm l$ 10359 no. of unique data used ($I > 3\sigma(I)$) no. of parameters 370 error in an observtn of unit wt 2.59 R 0.035	scan type	$\omega/1.67\theta$
θ limits $3^{\circ} < \theta < 28^{\circ}$ hemisphere colletd $+h\pm k\pm l$ no. of data 10359 no. of unique data used $(I > 3\sigma(I))$ no. of parameters 370 error in an observtn of unit wt 2.59 R 0.035	scan width	$1.1 + 0.35 \tan \theta$
θ limits $3^{\circ} < \theta < 28^{\circ}$ hemisphere colletd $+h\pm k\pm l$ no. of data 10359 no. of unique data used $(I > 3\sigma(I))$ no. of parameters 370 error in an observtn of unit wt 2.59 R 0.035	background	25% of full scan width on both sides
no. of data 10359 no. of unique data used $(I > 6000 \\ 3\sigma(I))$ no. of parameters 370 error in an observtn of unit wt 2.59 R 0.035		3° < θ < 28°
no. of data 10359 no. of unique data used $(I > 6000 \\ 3\sigma(I))$ no. of parameters 370 error in an observtn of unit wt 2.59 R 0.035	hemisphere colletd	+h±k±l
$3\sigma(I)$ no. of parameters error in an observtn of unit wt 2.59 R 0.035		10359
$3\sigma(I)$) no. of parameters error in an observtn of unit wt 2.59 R 0.035	no. of unique data used $(I >$	6000
no. of parameters 370 error in an observtn of unit wt 2.59 R 0.035		
error in an observtn of unit wt 2.59 R 0.035		370
R 0.035		2.59
R 0.047		0.035
3,047	$R_{\mathbf{w}}$	0.047

 $(CO)_3(dppe)(1-hexyne)$ and $fac\text{-}W(CO)_3(dppe)(THF)$ as judged by IR. The ratio of products remained unchanged for several hours at room temperature. Heating this mixture to 60 °C for 3 h precipitated a pale yellow solid. An IR of the solution showed W(CO)₄(dppe) as the only carbonyl containing material left in solution. The pale yellow powder was identified as $\{[W(CO)_3(dppe)]_2(\mu-dppe)\}^{18}$ IR $(CH_2Cl_2) \nu(CO) (cm^{-1})$ 1935 s, 1832 s; ³¹P NMR (CH₂Cl₂) δ 34.4 (d, ² J_{PP} = 22 Hz, 2 P), 8.5 (m, 1 P).

 $W(CO)_2(dppe)(DMAC)_2$ (3) (DMAC = Dimethylacetylenedicarboxylate). To a mixture of solid fac-W(CO)3(dppe)(acetone) (1.06 mmol, 0.77 g) and DMAC (3.9 mmol, 0.56 g) was added 30 mL of THF; a deep red solution resulted. The mixture was stirred at room temperature overnight, then solvent was removed, and the resulting oil was chromatographed on Florisil. The product eluted as the first yellow band after developing the column with CH2Cl2, a 1:1 ether: THF mixture, and THF. After solvent removal the light yellow oil can be recrystallized from CH₂Cl₂/hexane to give amber crystals in 26% yield. IR (thf) ν (CO) (cm⁻¹) 2030 s, 1980 s, ν (COO) 1730 m, 1700 m; IR (KBr) ν (CO) 2030 s, 1980 s, ν (COO) 1715 m, 1685 m; ¹H NMR (acetone- d_6) δ 8.00-6.92 (m, Ph), 3.58 (s, OMe, 6 H), 2.80 (m, PCH₂CH₂P), 2.74 (s, OMe, 6 H); ${}^{31}P{}^{1}H}$ NMR (acetone- d_6) δ 27.5 (s, ${}^{1}J_{PW} = 187$ Hz); ¹³C{¹H} NMR (CD₂Cl₂) δ 202.0 (d, ² J_{CP} = 61 Hz, 2 CO), 170.6 (s, C(O)(OMe), 166.5 (s, C(O)OMe), 138.0-126.9 (Ph and possibly bound alkyne carbons), 52.3 (s, C(O)OCH₃), 51.2 (s, C(O)OCH₃), 25.1 (m, $^2J_{CP}$ coupling, PCH₂CH₂P). Anal. Found (Calcd for W(CO)₂(dppe)- $(DMAC)_{2^{-1}/2}CH_2Cl_2$: C, 49.20 (50.41); H, 4.12 (3.87); W, 18.82

Collection of Diffraction Data. A yellow prism having approximate dimensions $1.0 \times 0.6 \times 0.5$ mm was mounted on a glass wand and coated with epoxy cement. Diffraction data were collected on an Enraf-Nonius CAD-4 automated diffractometer.¹⁹ A triclinic cell was indicated from 25 centered reflections found in the region $30^{\circ} < 2\theta < 35^{\circ}$ and refined by least-squares calculations. The unit cell parameters are listed in Table

Diffraction data were collected in the hemisphere $+h\pm k\pm l$ under the conditions specified in Table I. Three reflections chosen as intensity standards were monitored every 3 h and showed no decay. The crystal was checked for orientation after every 300 reflections; recentering was never required. Four scans with nine reflections having $80^{\circ} < \chi < 90^{\circ}$ were performed to provide an empirical correction for absorption. The data were corrected for Lorentz-polarization effects, and 6000 reflections having $I > 3\sigma(I)^{20}$ were used in the structure solution and refinement.

Solution and Refinement of the Structure. The solution of the structure was straightforward from the application of the heavy atom method. The space group PI was deduced from the presence of two molecules per unit cell which were related by an inversion center. The tungsten atom was located in a three-dimensional Patterson function. The positions of the remaining non-hydrogen atoms were obtained from subsequent Fourier and difference Fourier calculations. One molecule of methylene chloride of solvation was also located in the unique portion of the unit cell.

Least-squares refinement²¹ of the 56 non-hydrogen atoms allowing all except the methylene chloride and the phenyl carbons to vary anisotropically produced unweighted and weighted residuals of 6.3% and 7.1%, respectively.²² The positions of the hydrogen atoms were calculated by using a C-H distance of 0.95 Å with β set at 8.0. Further full matrix least-squares refinement keeping the hydrogens in fixed positions while allowing the methylene chloride and the phenyl carbons to vary isotropically and the remaining atoms to vary anisotropically converged with R=3.5% and $R_{\rm w}=4.7\%.^{23}$ The largest peak in the final difference Fourier had an intensity of 0.74 e/Å³ and was residual electron density around the tungsten.

Theoretical Calculations. The extended Hückel method, program 1CON8, was used for calculations on the model complexes fac-W(CO)₃-(PH₃)₂(HCCH) and mer-W(CO)₃(PH₃)₂(HCCH). Values for parameters used in the calculations were obtained from the literature.²⁴ Inner coordination sphere distances were taken from the structure of mer-W-(CO)₃(dppe)(diethylfumarate).²⁵ The M-C(alkyne) and the C-C(alkyne) distances were set at 2.06 and 1.28 Å, respectively, as found in the structure of W(CO)(PhCCPh)₃.8 The C-C-H angle was set at 135°.

fac-W(CO)₃(dppe)(η^2 -HC \rightleftharpoons CR) [R = H (2a), Ph (2b), n-Bu (2c)]. These complexes were prepared by alkyne substitution of the labile solvent ligand in fac-W(CO)₃(dppe)(acetone).¹⁷ Toluene was used as the reaction solvent, and the products were isolated after 5 min of stirring by filtering the reaction solution directly into excess hexanes to precipitate the alkyne adducts (eq 1). Tetrahydrofuran is also a suitable reaction solvent for preparing 2a and 2b, but addition of a large excess of 1-hexyne to fac-W-(CO)₃(dppe)(acetone) in THF yields only a 1:1 equilibrium mixture of fac-W(CO)₃(dppe)(η^2 -HC=-n-Bu) and fac-W- $(CO)_3(dppe)(THF).$

Replacement of coordinated acetone with phenylacetylene results in roughly a 50-cm⁻¹ increase in the average carbonyl stretching frequency. A triplet at 5.74 ppm (${}^{3}J_{HP} = 12 \text{ Hz}$) in the ¹H NMR is assigned to the terminal acetylenic proton which is coupled to both dppe phosphorus nuclei. Retention of a facial geometry is evident from the singlet, 37.6 ppm, observed in the ³¹P spectrum of **2b**. This signal is accompanied by satellites due to 183 W ($I = ^{1}/_{2}$, 14% abundant), $^{1}J_{PW} = 204$ Hz, a value in the range observed for 31 P nuclei trans to carbonyl ligands in 6 complexes.26 Similar IR and 1H NMR results were obtained for the acetylene and 1-hexyne adducts, 2a and 2c, respectively.

Addition of internal alkynes such as PhC≡CPh, MeC≡CMe, or EtC≡CEt to fac-W(CO)₃(dppe)(acetone) in toluene produced

⁽¹⁸⁾ Zingales, F.; Canziani, F. Gazzeta 1962, 92, 343.

⁽¹⁹⁾ Programs utilized during solution and refinement were from the En-

raf-Nonius structure determination package. (20) I = S(C + RB) and $\sigma(I) = [2S^2(C + R^2B) + (\rho I)^2]^{1/2}$, where $S = (2R^2 + R^2B) + (2R^2 + R^2 + R^2B) + (2R^2 + R^2 + R^2 + R^2 + R^$ scan rate, C = total integrated peak count, R = ratio of scan count time to background count time, B = total background count, and $\rho = 0.03$ is a correction factor

⁽²¹⁾ The function minimized was $\Sigma w(|F_o| - |F_c|)^2$. (22) $R_{\text{unweighted}} = \sum (|F_o| - |F_c|)/\sum |F_o|$ and $R_{\text{weighted}} = \sum |w(|F_o| - |F_c|)^2/\sum wF_o^2]^{1/2}$.

⁽²³⁾ Scattering factors were taken from the following: Cromer, D. T., Waber, J. T. International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV,

^{(24) (}a) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. (b) Kubacek, P.; Hoffmann, R. J. Am. Chem. Soc. 1981, 103, 4320. (c) Stockis, A.; Hoffmann, R. J. Am. Chem. Soc. 1980, 102, 2952. (d) Schilling, B. E. R.; Hoffmann, R.; Lichtenberger, D. L. J. Am. Chem. Soc. 1979, 101, 585.

⁽²⁵⁾ Faller, J. W.; personal communication.
(26) Pregosin, P. S.; Kunz, R. W. NMR: Basic Princ. Prog. 1978, 16, 126. (b) Grim, S. O.; Wheatland, D. A.; McFarlane, W. J. Am. Chem. Soc. 1967, 89, 5573. (c) Birdwhistell, K. R.; Tonker, T. L.; Templeton, J. L. J. Am. Chem. Soc. 1985, 107, 4474.

Table II. Atomic Positional Parameters for W(CO)₂(dppe)(DMAC)₂ (3)^a

No.	W(CO)2(dppe	$(DMAC)_2 (3)^a$		
P(1) 0.3021 (1) 0.18376 (7) 0.3287 (1) P(2) 0.2432 (1) 0.35171 (7) 0.2662 (1) O(1) 0.0753 (4) 0.3031 (2) -0.1670 (4) O(2) 0.2531 (4) 0.0813 (3) -0.1079 (4) O(3) 0.3376 (4) 0.3080 (3) -0.1765 (4) O(4) 0.5243 (4) 0.2769 (3) -0.0453 (4) O(5) 0.5941 (4) 0.2464 (2) 0.3170 (4) O(6) 0.5987 (3) 0.1470 (2) 0.1545 (4) O(7) 0.0094 (5) 0.0707 (3) -0.0729 (7) O(8) -0.1402 (4) 0.1450 (3) -0.0103 (5) O(9) -0.0139 (4) 0.3022 (2) 0.3504 (4) O(10) -0.1480 (3) 0.3100 (2) 0.1431 (4) C(1) 0.1264 (5) 0.2774 (3) -0.0712 (5) C(2) 0.2413 (5) 0.1342 (3) -0.0313 (5) C(3) 0.3619 (5) 0.2569 (3) 0.0239 (5) C(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2901 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0939 (5) 0.2848 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4632 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(20) 0.0326 (6) 0.0941 (3) 0.4587 (6) C(21) 0.0524 (6) 0.0391 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0325 (3) 0.0605 (5) C(10) 0.0455 (4) 0.0470 (3) 0.1468 (5) C(11) 0.0524 (6) 0.03561 (4) 0.2146 (8) C(12) 0.0524 (6) 0.03561 (4) 0.2146 (8) C(13) 0.3048 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.0325 (3) 0.3954 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2525 (6) C(33) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(34) 0.124 (6) 0.4866 (4) 0.3734 (4) 0.3665 (7) C(34) 0.197 (7) 0.5385 (4) 0.4404 (3) 0.3662 (6) C(35) 0.4308 (6) 0.4345 (3) 0.1441 (6) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.40	atom	x	у	z
P(1) 0.3021 (1) 0.18376 (7) 0.3287 (1) P(2) 0.2432 (1) 0.35171 (7) 0.2662 (1) O(1) 0.0753 (4) 0.3031 (2) -0.1670 (4) O(2) 0.2531 (4) 0.0813 (3) -0.1079 (4) O(3) 0.3376 (4) 0.3080 (3) -0.1765 (4) O(4) 0.5243 (4) 0.2769 (3) -0.0453 (4) O(5) 0.5941 (4) 0.2464 (2) 0.3170 (4) O(6) 0.5987 (3) 0.1470 (2) 0.1545 (4) O(7) 0.0094 (5) 0.0707 (3) -0.0729 (7) O(8) -0.1402 (4) 0.1450 (3) -0.0103 (5) O(9) -0.0139 (4) 0.3022 (2) 0.3504 (4) O(10) -0.1480 (3) 0.3100 (2) 0.1431 (4) C(1) 0.1264 (5) 0.2774 (3) -0.0712 (5) C(2) 0.2413 (5) 0.1342 (3) -0.0313 (5) C(3) 0.3619 (5) 0.2569 (3) 0.0239 (5) C(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2901 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0939 (5) 0.2848 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4632 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(20) 0.0326 (6) 0.0941 (3) 0.4587 (6) C(21) 0.0524 (6) 0.0391 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0325 (3) 0.0605 (5) C(10) 0.0455 (4) 0.0470 (3) 0.1468 (5) C(11) 0.0524 (6) 0.03561 (4) 0.2146 (8) C(12) 0.0524 (6) 0.03561 (4) 0.2146 (8) C(13) 0.3048 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.0325 (3) 0.3954 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2525 (6) C(33) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(34) 0.124 (6) 0.4866 (4) 0.3734 (4) 0.3665 (7) C(34) 0.197 (7) 0.5385 (4) 0.4404 (3) 0.3662 (6) C(35) 0.4308 (6) 0.4345 (3) 0.1441 (6) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.40	W	0.22019 (2)	0.23095 (1)	0.9729 (2)
P(2) 0.2432 (1) 0.35171 (7) 0.2662 (1) O(1) 0.0753 (4) 0.3031 (2) -0.1670 (4) O(2) 0.2531 (4) 0.0813 (3) -0.1079 (4) O(3) 0.3376 (4) 0.3080 (3) -0.1765 (4) O(4) 0.5243 (4) 0.2769 (3) -0.0453 (4) O(5) 0.5941 (4) 0.2464 (2) 0.3170 (4) O(6) 0.5987 (3) 0.1470 (2) 0.1545 (4) O(7) 0.0094 (5) 0.0707 (3) -0.0729 (7) O(8) -0.1492 (4) 0.1450 (3) -0.0103 (5) O(9) -0.0139 (4) 0.3022 (2) 0.3504 (4) O(10) -0.1480 (3) 0.3100 (2) 0.1431 (4) C(1) 0.1264 (5) 0.2774 (3) -0.0712 (5) C(2) 0.2413 (5) 0.1342 (3) -0.0313 (5) C(3) 0.3619 (5) 0.2569 (3) 0.0239 (5) C(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2941 (3) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0992 (4) -0.0893 (9) C(13) -0.0393 (5) C(14) -0.2339 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) C(14) -0.2339 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2555 (5) C(14) -0.2339 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2339 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2555 (6) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4616 (6) C(12) -0.2339 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.1515 (3) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.3560 (6) C(20) 0.0326 (6) 0.0941 (3) 0.3560 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1905 (3) 0.3482 (5) C(24) 0.0524 (6) 0.0639 (3) 0.3550 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.4945 (4) 0.3733 (7) C(26) 0.6119 (7) 0.5385 (4) 0.2444 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(33) 0.0176 (7) 0.5385 (4) 0.2454 (7) 0.3546 (7) 0.4368 (6) 0.4345 (3) 0.4408 (6) 0.4345 (3) 0.1441 (6) 0.3408 (6) 0.4345 (3) 0.14	P(1)			
O(1) 0.0753 (4) 0.3031 (2) -0.1670 (4) O(2) 0.2531 (4) 0.0813 (3) -0.1079 (4) O(3) 0.3376 (4) 0.3080 (3) -0.1765 (4) O(4) 0.5243 (4) 0.2769 (3) -0.0453 (4) O(5) 0.5941 (4) 0.2464 (2) 0.3170 (4) O(6) 0.5987 (3) 0.1470 (2) 0.1545 (4) O(7) 0.0094 (5) 0.0707 (3) -0.0729 (7) O(8) -0.1402 (4) 0.1450 (3) -0.0103 (5) O(9) -0.0139 (4) 0.3022 (2) 0.3504 (4) O(10) -0.1480 (3) 0.3100 (2) 0.1431 (4) C(1) 0.1264 (5) 0.2774 (3) -0.0712 (5) C(2) 0.2413 (5) 0.1342 (3) -0.0313 (5) C(3) 0.3619 (5) 0.2569 (3) 0.0239 (5) C(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4614 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3312 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.050 (3) 0.3482 (5) C(34) 0.1124 (6) 0.4866 (4) 0.3734 (6) C(35) 0.4012 (5) 0.4034 (3) 0.2630 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.5385 (4) 0.2457 (7) 0.3585 (4) 0.2457 (7) C(33) 0.0176 (7) 0.5385 (4) 0.3466 (7) C(34) 0.1246 (6) 0.4345 (3) 0.1441 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(30) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6				0.2662 (1)
O(2) 0.2531 (4) 0.0813 (3) -0.1079 (4) O(3) 0.3376 (4) 0.3080 (3) -0.1765 (4) O(4) 0.5243 (4) 0.2769 (3) -0.0453 (4) O(5) 0.5941 (4) 0.2464 (2) 0.3170 (4) O(6) 0.5987 (3) 0.1470 (2) 0.1545 (4) O(7) 0.0094 (5) 0.0707 (3) -0.0729 (7) O(8) -0.1402 (4) 0.1450 (3) -0.0103 (5) O(9) -0.0139 (4) 0.3022 (2) 0.3504 (4) O(10) -0.1480 (3) 0.3100 (2) 0.1431 (4) O(10) -0.1480 (3) 0.3100 (2) 0.1431 (4) O(10) -0.1480 (3) 0.3100 (2) 0.1431 (4) O(10) -0.1480 (5) 0.2774 (3) -0.0712 (5) O(2) 0.2413 (5) 0.1342 (3) -0.0313 (5) O(3) 0.3619 (5) 0.2569 (3) 0.0239 (5) O(4) O(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) O(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) O(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) O(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) O(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) O(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) O(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) O(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) O(11) -0.234 (5) 0.1273 (3) -0.0146 (6) O(11) -0.234 (5) 0.1273 (3) -0.0146 (6) O(11) -0.234 (6) 0.3561 (4) 0.2470 (3) 0.1468 (5) O(11) -0.2343 (6) 0.3561 (4) 0.2146 (8) O(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) O(16) 0.2812 (5) 0.3325 (3) 0.4322 (5) O(13) -0.0393 (5) O(2884 (3) 0.2255 (5) O(13) -0.0393 (5) O(2884 (3) 0.2555 (5) O(13) -0.0393 (5) O(2812 (5) 0.3325 (3) 0.4432 (5) O(11) O(1938 (5) O(1515 (3) 0.3544 (5) O(210) O(326 (6) O(341 (3) 0.4567 (6) O(22) O(324 (6) O(3351 (4) O(2146 (8) O(22) O(324 (6) O(3551 (4) O(2146 (8) O(3551 (4) O(2146 (4) O(3546 (6) O(3435 (4) O(3556 (6) O(3551 (4) O(3551				
O(3)				
O(4)		[CONT. 10.1 10		
O(5) 0.5941 (4) 0.2464 (2) 0.3170 (4) O(6) 0.5987 (3) 0.1470 (2) 0.1545 (4) O(7) 0.0094 (5) 0.0707 (3) -0.0729 (7) O(8) -0.1402 (4) 0.1450 (3) -0.0103 (5) O(9) -0.0139 (4) 0.3022 (2) 0.3504 (4) O(10) -0.1480 (3) 0.3100 (2) 0.1431 (4) C(1) 0.1264 (5) 0.2774 (3) -0.0712 (5) C(2) 0.2413 (5) 0.1342 (3) -0.0313 (5) C(3) 0.3619 (5) 0.2569 (3) 0.0239 (5) C(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11)				-0.0453(4)
O(6) 0.5987 (3) 0.1470 (2) 0.1545 (4) O(7) 0.0094 (5) 0.0707 (3) -0.0729 (7) O(8) -0.1402 (4) 0.1450 (3) -0.0103 (5) O(9) -0.0139 (4) 0.3022 (2) 0.3504 (4) O(10) -0.1480 (3) 0.3100 (2) 0.1431 (4) C(1) 0.1264 (5) 0.2774 (3) -0.0712 (5) C(2) 0.2413 (5) 0.1342 (3) -0.0712 (5) C(3) 0.3619 (5) 0.2569 (3) 0.0239 (5) C(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0234 (5) 0.1273 (3) -0.0146 (6) C(11) <td></td> <td></td> <td></td> <td>0.3170 (4)</td>				0.3170 (4)
O(7) 0.0094 (5) 0.0707 (3) -0.0729 (7) O(8) -0.1402 (4) 0.1450 (3) -0.0103 (5) O(9) -0.0139 (4) 0.3022 (2) 0.3504 (4) O(10) -0.1480 (3) 0.3100 (2) 0.1431 (4) C(1) 0.1264 (5) 0.2774 (3) -0.0712 (5) C(2) 0.2413 (5) 0.1342 (3) -0.0313 (5) C(3) 0.3619 (5) 0.2569 (3) 0.0239 (5) C(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2339 (7) 0.0922 (4) -0.0893 (9) C(13)<			5 (175) * * 13 (17) TO 10 (17) TO 10 (17)	
O(8) -0.1402 (4) 0.1450 (3) -0.0103 (5) O(9) -0.0139 (4) 0.3022 (2) 0.3504 (4) O(10) -0.1480 (3) 0.3100 (2) 0.1431 (4) C(1) 0.1264 (5) 0.2774 (3) -0.0712 (5) C(2) 0.2413 (5) 0.1342 (3) -0.0313 (5) C(3) 0.3619 (5) 0.2569 (3) 0.0239 (5) C(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14)<	O(7)			
O(9) -0.0139 (4) 0.3022 (2) 0.3504 (4) O(10) -0.1480 (3) 0.3100 (2) 0.1431 (4) C(1) 0.1264 (5) 0.2774 (3) -0.0712 (5) C(2) 0.2413 (5) 0.1342 (3) -0.0313 (5) C(3) 0.3619 (5) 0.2569 (3) 0.0239 (5) C(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(11) -0.0254 (5) 0.1273 (3) -0.046 (6) C(11) -0.0239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14)				-0.0103(5)
C(1) 0.1264 (5) 0.2774 (3) -0.0712 (5) C(2) 0.2413 (5) 0.1342 (3) -0.0313 (5) C(3) 0.3619 (5) 0.2569 (3) 0.0239 (5) C(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.082 (4) 0.2522 (6) C(20) 0.0141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.3733 (7) C(33) 0.0176 (7) 0.5385 (4) 0.2454 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3733 (7) C(35) 0.3619 (5) 0.4084 (4) 0.3536 (4) C(36) 0.4713 (5) 0.4086 (4) 0.3734 (6) C(37) 0.5543 (6) 0.4486 (4) 0.3734 (6) C(38) 0.5931 (7) 0.4846 (4) 0.3734 (6) C(37) 0.5543 (6) 0.4486 (4) 0.3734 (6) C(38) 0.5931 (7) 0.4846 (4) 0.3734 (6) C(38) 0.5931 (7) 0.4867 (4) 0.2425 (7) C(37) 0.5136 (6) 0.4435 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7996 (4) 0.3546 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) C(11) 0.1887 (2) 0.7836 (1) 0.3208 (3)		-0.0139(4)		0.3504 (4)
C(2) 0.2413 (5) 0.1342 (3) -0.0313 (5) C(3) 0.3619 (5) 0.2569 (3) 0.0239 (5) C(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.196 (3) 0.4494 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3536 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4034 (3) 0.2630 (5) C(37) 0.5543 (6) 0.4594 (4) 0.3734 (6) C(38) 0.5301 (7) 0.4846 (4) 0.1340 (8) C(37) 0.5543 (6) 0.4486 (4) 0.1340 (8) C(38) 0.5301 (7) 0.4886 (4) 0.3734 (6) C(38) 0.5301 (7) 0.4886 (4) 0.3734 (6) C(39) 0.4237 (7) 0.5378 (4) 0.3662 (6) C(30) 0.4237 (7) 0.5378 (4) 0.3662 (7) C(40) 0.3408 (6) 0.4435 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) C(11) 0.1887 (2) 0.7836 (1) 0.3208 (3)	O(10)	-0.1480(3)	0.3100(2)	0.1431 (4)
C(3) 0.3619 (5) 0.2569 (3) 0.0239 (5) C(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2592 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3733 (6) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(38) 0.5301 (7) 0.4846 (4) 0.1340 (8) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4034 (3) 0.2630 (5) C(38) 0.5301 (7) 0.4867 (4) 0.3546 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.3546 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) C(1(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)	C(1)	0.1264 (5)	0.2774 (3)	-0.0712(5)
C(4) 0.4176 (5) 0.2256 (3) 0.1312 (5) C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.5233 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5385 (4) 0.2454 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.3734 (6) C(39) 0.4237 (7) 0.5385 (4) 0.24525 (7) C(39) 0.4237 (7) 0.4866 (4) 0.3734 (6) C(31) 0.0543 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) C(11) 0.1887 (2) 0.7836 (1) 0.3208 (3)	C(2)	0.2413 (5)	0.1342 (3)	-0.0313(5)
C(5) 0.4032 (5) 0.2841 (3) -0.0769 (5) C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5378 (4) 0.3655 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4294 (4) 0.2522 (6) C(35) 0.3619 (5) 0.4294 (4) 0.4594 (4) 0.3546 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4034 (3) 0.2630 (5) C(39) 0.4237 (7) 0.4859 (4) 0.4599 (4) 0.4459 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) C(11) 0.1887 (2) 0.7836 (1) 0.3208 (3)	C(3)	0.3619 (5)	0.2569 (3)	0.0239 (5)
C(6) 0.5792 (6) 0.3001 (5) -0.1378 (7) C(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5265 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22	C(4)	0.4176 (5)	0.2256 (3)	0.1312 (5)
C(7) 0.5449 (5) 0.2091 (3) 0.2110 (5) C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22	C(5)	0.4032 (5)	0.2841 (3)	-0.0769(5)
C(8) 0.7236 (6) 0.1247 (4) 0.2329 (8) C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3994 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(2	C(6)	0.5792 (6)	0.3001 (5)	-0.1378(7)
C(9) 0.0513 (5) 0.0862 (3) 0.0605 (5) C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(C(7)	0.5449 (5)	0.2091 (3)	0.2110 (5)
C(10) 0.0455 (4) 0.2470 (3) 0.1468 (5) C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C	C(8)	0.7236 (6)	0.1247 (4)	0.2329 (8)
C(11) -0.0254 (5) 0.1273 (3) -0.0146 (6) C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7)	C(9)	0.0513 (5)	0.0862 (3)	0.0605 (5)
C(12) -0.2239 (7) 0.0922 (4) -0.0893 (9) C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C	C(10)	0.0455 (4)	0.2470 (3)	0.1468 (5)
C(13) -0.0393 (5) 0.2884 (3) 0.2255 (5) C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(24) 0.5266 (6) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29	C(11)	-0.0254(5)	0.1273 (3)	-0.0146(6)
C(14) -0.2343 (6) 0.3561 (4) 0.2146 (8) C(15) 0.3648 (5) 0.2612 (3) 0.4614 (5) C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(21) 0.0524 (6) 0.0932 (3) 0.3132 (5) C(21) 0.0524 (6) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28	C(12)	-0.2239(7)	0.0922 (4)	-0.0893(9)
C(15)			0.2884 (3)	
C(16) 0.2812 (5) 0.3325 (3) 0.4432 (5) C(17) 0.1938 (5) 0.1515 (3) 0.3954 (5) C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32)				
C(17)				
C(18) 0.1707 (5) 0.1816 (3) 0.5233 (5) C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(38) 0.5301 (7) 0.4867 (4) 0.3546 (7) C(39) 0.4237 (7) 0.4867 (4) 0.3546 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) C1(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)				
C(19) 0.0907 (6) 0.1527 (3) 0.5665 (6) C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35				
C(20) 0.0326 (6) 0.0941 (3) 0.4867 (6) C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36				
C(21) 0.0524 (6) 0.0639 (3) 0.3570 (6) C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)				
C(22) 0.1324 (5) 0.0932 (3) 0.3132 (5) C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38				
C(23) 0.4292 (5) 0.1095 (3) 0.3482 (5) C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39	C(21)			
C(24) 0.5266 (6) 0.1088 (3) 0.4696 (6) C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41)<				
C(25) 0.6256 (7) 0.0495 (4) 0.4794 (7) C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41				
C(26) 0.6119 (7) -0.0075 (4) 0.3723 (7) C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1				11 (12 11 mm 4 m 4 m 4 m 13 m 13 m 13 m 14 m 14
C(27) 0.5170 (6) -0.0082 (4) 0.2522 (6) C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)		FROM BOOK BOOK - 120 BANK		
C(28) 0.4267 (5) 0.050 (3) 0.2407 (5) C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)				
C(29) 0.1141 (5) 0.4244 (3) 0.2594 (5) C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)				
C(30) 0.0191 (6) 0.4275 (3) 0.1403 (6) C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)				
C(31) -0.0770 (7) 0.4846 (4) 0.1340 (8) C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)				
C(32) -0.0772 (7) 0.5385 (4) 0.2454 (7) C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)	C(30)			
C(33) 0.0176 (7) 0.5378 (4) 0.3655 (7) C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)	C(31)			
C(34) 0.1124 (6) 0.4806 (4) 0.3734 (6) C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)	C(32)			
C(35) 0.3619 (5) 0.4034 (3) 0.2630 (5) C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)				
C(36) 0.4713 (5) 0.4120 (3) 0.3662 (6) C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)				
C(37) 0.5543 (6) 0.4549 (4) 0.3546 (7) C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)				
C(38) 0.5301 (7) 0.4867 (4) 0.2425 (7) C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)				
C(39) 0.4237 (7) 0.4759 (4) 0.1346 (7) C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) CI(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)	C(37)			
C(40) 0.3408 (6) 0.4345 (3) 0.1441 (6) C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) Cl(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)				
C(41) 0.1957 (7) 0.7096 (4) 0.4008 (8) Cl(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)				
Cl(1) 0.1887 (2) 0.7836 (1) 0.3208 (3)				

^a Numbers in parentheses are the esd's of the last digit listed.

mixtures of carbonyl containing products as judged by solution infrared spectra. Weak carbonyl IR absorptions compatible with fac-W(CO)₃(dppe)(η^2 -RC \equiv CR) formulations were present in solution, but we were unable to purify and isolate these products. No reaction was evident when the labile molybdenum complex, fac-Mo(CO)₃(dppe)(THF) was added to a large excess of phenylacetylene.

W(CO)₂(dppe)(DMAC)₂ (3) [DMAC = Dimethylacetylenedicarboxylate]. Addition of DMAC to a THF solution of fac-W(CO)₃(dppe)(acetone) forms W(CO)₂(dppe)(DMAC)₂ (eq 2). fac-W(CO)₃(dppe)(acetone) + 2DMAC → W(CO)₂(dppe)(DMAC)₂ + CO(g) + Me₂CO (2)

The facial tricarbonyl infrared absorptions of the reagent are replaced by cis dicarbonyl absorptions approximately 100 cm⁻¹ above those of the starting material. The IR also shows two

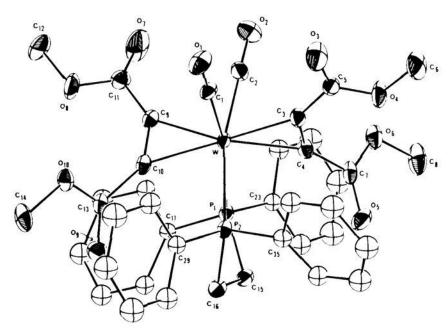


Figure 1. An ORTEP of $W(CO)_2(dppe)(DMAC)_2$ (3) illustrating the atomic numbering scheme.

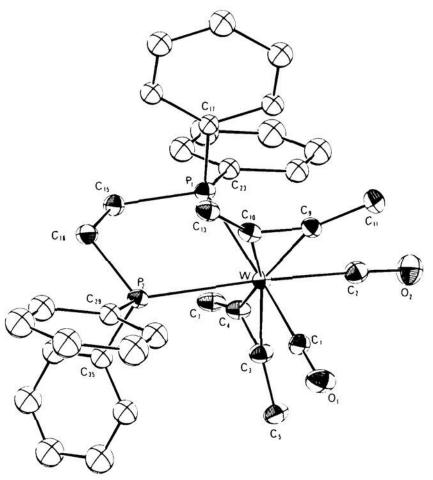


Figure 2. A view of the staggered-eclipsed inner coordination sphere of $W(CO)_2(dppe)(DMAC)_2$ (3). The four DMAC ester O_2Me groups have been removed for clarity.

medium intensity absorptions at 1730 and 1700 cm⁻¹ due to alkyne ester substituents. Singlets at 3.58 and 2.74 ppm in the ¹H NMR spectrum of 3 are assigned to the methoxy groups of the alkyne ligands. Both dppe ³¹P nuclei resonate at 27.5 ppm with ¹ J_{PW} = 187 Hz in the ³¹P NMR spectrum of 3. The cis dicarbonyl infrared pattern and equivalent environments for both ends of the chelating dppe ligand are only consistent with a trans arrangement of the two alkyne ligands. The two equivalent carbonyl carbons appear at 202.0 ppm in the ¹³C spectrum as a doublet ($^2J_{CP}$ = 61 Hz) due to strong coupling to the trans phosphorus nucleus. ¹³C singlets were assigned to the ester carbonyls (170.6 and 166.5 ppm) and the alkyne methoxy carbons (52.3 and 51.2 ppm), but we were unable to identify the alkyne carbons; they may be obscured by the dppe phenyl resonances.

The trans alkyne—cis carbonyl geometry for 3 anticipated from spectral data was confirmed by the solid-state structure shown in Figure 1 where the atomic numbering scheme is defined. The inner coordination sphere is seen more clearly in Figure 2. Final positional parameters for all non-hydrogen atoms are listed in Table II, while bond distances and angles are collected in Tables III and IV, respectively.

Table III. Selected Bond Distances (Å) in W(CO)₂(dppe)(DMAC)₂

W-P(1) W-P(2) W-C(1) W-C(1) W-C(2) 2.033 (3) W-C(2) 2.033 (3) W-C(3) W-C(3) 2.162 (3) W-C(4) 2.177 (3) W-C(9) 2.150 (3) W-C(10) 2.176 (3) P(1)-C(15) 1.846 (3) P(1)-C(17) 1.835 (3) P(1)-C(23) 1.838 (3) P(2)-C(16) 1.837 (3) P(2)-C(29) 1.834 (3) P(2)-C(29) 1.834 (3) P(2)-C(35) 1.824 (3) C(1)-O(1) 1.143 (4) C(2)-O(2) 1.144 (4) C(5)-O(3) 1.197 (4) C(5)-O(4) 1.320 (4) C(6)-O(4) 1.320 (4) C(6)-O(4) 1.330 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.317 (4) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(13)-O(10) 1.331 (4) C(13)-O(10) 1.331 (4) C(13)-O(10) 1.331 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4) C(15)-C(16) 1.524 (5)	(3)		
W-C(1) 2.033 (3) W-C(2) 2.033 (3) W-C(3) 2.162 (3) W-C(4) 2.177 (3) W-C(9) 2.150 (3) W-C(10) 2.176 (3) P(1)-C(15) 1.846 (3) P(1)-C(17) 1.835 (3) P(1)-C(23) 1.838 (3) P(2)-C(16) 1.837 (3) P(2)-C(29) 1.834 (3) P(2)-C(29) 1.834 (3) P(2)-C(35) 1.824 (3) C(1)-O(1) 1.143 (4) C(2)-O(2) 1.144 (4) C(5)-O(3) 1.197 (4) C(5)-O(4) 1.320 (4) C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.444 (5) C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.468 (5) C(10)-C(13) 1.469 (4)	W-P(1)	2.565 (1)	
W-C(2) 2.033 (3) W-C(3) 2.162 (3) W-C(4) 2.177 (3) W-C(9) 2.150 (3) W-C(10) 2.176 (3) P(1)-C(15) 1.846 (3) P(1)-C(17) 1.835 (3) P(1)-C(23) 1.838 (3) P(2)-C(16) 1.837 (3) P(2)-C(29) 1.834 (3) P(2)-C(29) 1.824 (3) C(1)-O(1) 1.143 (4) C(2)-O(2) 1.144 (4) C(5)-O(3) 1.197 (4) C(5)-O(4) 1.320 (4) C(5)-O(4) 1.320 (4) C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.468 (5) C(10)-C(13) 1.469 (4)	W-P(2)	2.542 (1)	
W-C(3) W-C(4) W-C(9) 2.150 (3) W-C(10) 2.176 (3) P(1)-C(15) P(1)-C(17) 1.835 (3) P(1)-C(23) P(1)-C(23) P(2)-C(16) 1.837 (3) P(2)-C(29) 1.834 (3) P(2)-C(29) 1.834 (3) P(2)-C(35) 1.824 (3) C(1)-O(1) 1.143 (4) C(2)-O(2) 1.144 (4) C(5)-O(3) 1.197 (4) C(5)-O(4) 1.320 (4) C(5)-O(4) 1.320 (4) C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(12)-O(8) 1.331 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.331 (4) C(14)-O(10) 1.331 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.468 (5)	W-C(1)	2.033 (3)	
W-C(4) W-C(9) 2.150 (3) W-C(10) 2.176 (3) P(1)-C(15) 1.846 (3) P(1)-C(23) 1.835 (3) P(1)-C(23) 1.838 (3) P(2)-C(16) 1.837 (3) P(2)-C(29) 1.834 (3) P(2)-C(35) 1.824 (3) C(1)-O(1) 1.143 (4) C(2)-O(2) 1.144 (4) C(5)-O(3) 1.197 (4) C(5)-O(4) 1.320 (4) C(6)-O(4) 1.320 (4) C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.330 (4) C(8)-O(6) 1.155 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.468 (5)		` '	
W-C(9) W-C(10) 2.176 (3) P(1)-C(15) P(1)-C(17) 1.835 (3) P(1)-C(23) P(1)-C(23) P(2)-C(16) 1.837 (3) P(2)-C(29) 1.834 (3) P(2)-C(35) 1.824 (3) C(1)-O(1) 1.143 (4) C(2)-O(2) 1.144 (4) C(5)-O(3) 1.197 (4) C(5)-O(4) 1.320 (4) C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)	W-C(3)		
W-C(10) P(1)-C(15) P(1)-C(17) P(1)-C(17) P(1)-C(23) P(1)-C(23) P(2)-C(16) P(2)-C(29) P(2)-C(35) C(1)-O(1) P(2)-C(35) C(1)-O(1) P(3) P(3)-C(2) P(4) P(5)-O(3) P(5)-O(3) P(6)-O(4) P(7)-O(5) P(7)-O(5) P(7)-O(6) P(8)-O(6) P(1)-O(7) P(1)-O(7) P(1)-O(8) P(1)-O(8) P(1)-O(8) P(1)-O(8) P(1)-O(9) P(1)-O(10) P(1)-O(
P(1)-C(15)			
P(1)-C(17)	W-C(10)	2.1/6 (3)	
P(1)-C(23) 1.838 (3) P(2)-C(16) 1.837 (3) P(2)-C(29) 1.834 (3) P(2)-C(35) 1.824 (3) C(1)-O(1) 1.143 (4) C(2)-O(2) 1.144 (4) C(5)-O(3) 1.197 (4) C(5)-O(4) 1.320 (4) C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)	P(1)-C(15)	1.846 (3)	
P(2)-C(16) 1.837 (3) P(2)-C(29) 1.834 (3) P(2)-C(35) 1.824 (3) C(1)-O(1) 1.143 (4) C(2)-O(2) 1.144 (4) C(5)-O(3) 1.197 (4) C(5)-O(4) 1.320 (4) C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(12)-O(8) 1.331 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)	P(1)-C(17)	1.835 (3)	
P(2)-C(29) 1.834 (3) P(2)-C(35) 1.824 (3) C(1)-O(1) 1.143 (4) C(2)-O(2) 1.144 (4) C(5)-O(3) 1.197 (4) C(5)-O(4) 1.320 (4) C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(12)-O(8) 1.344 (5) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)	P(1)-C(23)	1.838 (3)	
P(2)-C(35) 1.824 (3) C(1)-O(1) 1.143 (4) C(2)-O(2) 1.144 (4) C(5)-O(3) 1.197 (4) C(5)-O(4) 1.320 (4) C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.344 (5) C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)	* / * /	` ,	
C(1)-O(1) 1.143 (4) C(2)-O(2) 1.144 (4) C(5)-O(3) 1.197 (4) C(5)-O(4) 1.320 (4) C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.344 (5) C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)		` /	
C(2)-O(2) 1.144 (4) C(5)-O(3) 1.197 (4) C(5)-O(4) 1.320 (4) C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.444 (5) C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)	P(2)-C(35)	1.824 (3)	
C(5)-O(3) 1.197 (4) C(5)-O(4) 1.320 (4) C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.317 (4) C(12)-O(8) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)	C(1)-O(1)	1.143 (4)	
C(5)-O(4) 1.320 (4) C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.344 (5) C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)	C(2)-O(2)	1.144 (4)	
C(6)-O(4) 1.463 (4) C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.444 (5) C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)	C(5)-O(3)	1.197 (4)	
C(7)-O(5) 1.193 (4) C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.444 (5) C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)		` '	
C(7)-O(6) 1.330 (4) C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.444 (5) C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)			
C(8)-O(6) 1.455 (5) C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.444 (5) C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)			
C(11)-O(7) 1.175 (5) C(11)-O(8) 1.317 (4) C(12)-O(8) 1.444 (5) C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)		` ,	
C(11)-O(8) 1.317 (4) C(12)-O(8) 1.444 (5) C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)			
C(12)-O(8) 1.444 (5) C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)			
C(13)-O(9) 1.203 (4) C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)			
C(13)-O(10) 1.331 (4) C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)			
C(14)-O(10) 1.466 (4) C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)			
C(3)-C(4) 1.303 (4) C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)			
C(3)-C(5) 1.477 (4) C(4)-C(7) 1.459 (5) C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)			
C(9)-C(10) 1.292 (4) C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)		` ,	
C(9)-C(11) 1.468 (5) C(10)-C(13) 1.469 (4)		1.459 (5)	
C(10)-C(13) 1.469 (4)	C(9)-C(10)	1.292 (4)	
C(15)-C(16) 1.524 (5)	* / * /		
	C(15)-C(16)	1.524 (5)	

Cyclic Voltammetry. Oxidation potentials for the three fac-W(CO)₃(dppe)(HCCR) complexes and W(CO)₂(dppe)(DMAC)₂ are compiled in Table V. In the fac-W(CO)₃(dppe)(HCCR) series a reversible oxidation is observed near +0.2 V. A second oxidation, usually irreversible, is alkyne dependent. No reductions were observed. In contrast to 2a-c, W(CO)₂(dppe)(DMAC)₂ has its first oxidation near +0.8 V, consistent with a much lower energy HOMO in this complex relative to the three fac-W(CO)₂-(dppe)(HCCR) complexes.

Discussion

Reactivity Patterns. Octahedral d⁶ metal complexes have no vacant $d\pi$ orbitals, and we anticipated that a repulsive 4-electron-2-center $d\pi - \pi_{\perp}$ conflict would characterize $d^6 L_5 M(\eta^2$ -alkyne) complexes. Terminal alkynes can undergo isomerization to form vinylidene complexes (eq 3)²⁷ to eliminate $d\pi$ -ligand π conflicts. 28 This alkyne to vinylidene rearrangement, common for octahedral d⁶ complexes, has not been observed for octahedral d^4 alkyne complexes where there is no 4-electron $d\pi - \pi_{\perp}$ conflict.

Preliminary efforts with [Et₄N][Mo(CO)₅Cl] as a precursor to d^6 alkyne derivatives appeared to yield $[Et_4N][Mo (DMAC)_3Cl$, a four-coordinate complex analogous to M(RC)

Chem. Soc. 1983, 105, 7789.

Table IV. Selected Bond Angles (deg) in W(CO)₂(dppe)(DMAC)₂

(3)	
P(1)-W-P(2) P(1)-W-C(1) P(1)-W-C(2) P(1)-W-C(3) P(1)-W-C(4) P(1)-W-C(9) P(1)-W-C(10) P(2)-W-C(1) P(2)-W-C(2) P(2)-W-C(3) P(2)-W-C(4) P(2)-W-C(4) P(2)-W-C(9) P(2)-W-C(10)	80.2 (1) 168.7 (1) 97.9 (1) 113.9 (1) 79.3 (1) 89.2 (1) 83.2 (1) 94.7 (1) 167.7 (1) 86.9 (1) 84.9 (1) 115.3 (1) 80.6 (1)
C(1)-W-C(2) C(1)-W-C(3) C(1)-W-C(4) C(1)-W-C(9) C(1)-W-C(10) C(2)-W-C(3) C(2)-W-C(4) C(2)-W-C(9) C(2)-W-C(10) C(3)-W-C(4) C(3)-W-C(9) C(3)-W-C(10) C(4)-W-C(9) C(4)-W-C(10) C(9)-W-C(10) C(9)-W-C(10) C(9)-C(10) C(10)-C(10) C(10)-C(9)-C(11) C(9)-C(10)-C(13) C(5)-O(4)-C(6) C(7)-O(6)-C(8) C(11)-O(8)-C(12) C(13)-O(10)-C(14)	89.2 (1) 75.6 (1) 110.5 (1) 83.9 (1) 86.0 (1) 82.7 (1) 82.8 (1) 76.7 (1) 111.5 (1) 34.9 (1) 151.0 (1) 156.8 (1) 154.8 (1) 154.8 (1) 134.5 (3) 135.9 (3) 137.5 (3) 117.4 (3) 115.6 (3) 115.9 (3) 115.9 (3)
O(3)-C(5)-O(4) O(3)-C(5)-C(3) O(4)-C(5)-C(3) O(5)-C(7)-O(6) O(5)-C(7)-C(4) O(6)-C(7)-C(4) O(7)-C(11)-O(8) O(7)-C(11)-C(9) O(8)-C(11)-C(9) O(9)-C(13)-O(10) O(9)-C(13)-C(10)	123.3 (3) 125.7 (3) 111.0 (3) 123.8 (3) 123.7 (3) 112.4 (3) 122.8 (3) 125.0 (3) 112.2 (3) 123.3 (3) 124.3 (3) 112.4 (2)

Table V. Cyclic Voltammetry Data

complex	$E_{p/2}$ (ox) V^a	ΔE , $(mV)^b$	i_c/i_a
fac-W(OC) ₃ (dppe)(HCCH) (2a)	+0.22, +0.67	85	0.9
fac-W(OC) ₃ (dppe)(HCCPh) ^c (2b)	$+0.2, +0.35^{c}$	120, 110	С
fac-W(OC) ₃ (dppe)(HCCBu) (2c)	+0.18, +0.63	90	1.0
trans-W(DMAC) ₂ (dppe)(CO) ₂ (3)	+0.78		

^a Potentials are reported relative to a saturated sodium chloride calomel electrode (SSCE) by using a value of +0.42 V for the ferrocene couple. Irreversible waves are reported as the potential at half peak height. b This is the peak-to-peak separation for the reversible oxidative waves (i.e., i_c/i_a , the ratio of cathodic current to anodic current, was between 0.9 and 1.0). ^cThis voltammogram was recorded at -78 °C. The two oxidative waves were not separated well enough to obtain an accurate i_c/i_a ratio.

CR)₃L complexes reported by others.^{7,29} The electron withdrawing ester groups of DMAC evidently promote additional CO loss once DMAC enters the coordination sphere (vide infra). Alkynes such as PhC₂Ph and PhC₂H did not react with $[Mo(CO)_5C1]^-$.

^{(27) (}a) Bruce, M. I., Swincer, A. G. Adv. Organomet. Chem. 1983, 22, 59. (b) Adams, J. S.; Cunningham, M.; Whiteley, M. W. J. Organomet. Chem. 1985, 293, Cl3. (c) Pombeiro, A. J. L.; Jeffery, J. C.; Pickett, C. J.; Richards, R. L. J. Organomet. Chem. 1984, 277, C7.

(28) Birdwhistell, K. R.; Burgmayer, S. J. N.; Templeton, J. L. J. Am.

^{(29) (}a) Maher, J. M.; Fox, J. R.; Foxman, B. M.; Cooper, N. J. J. Am. Chem. Soc. 1984, 106, 2347. (b) Chiu, K. W.; Lyons, D.; Wilkinson, G.; Thornton-Pett, M.; Hursthouse, M. B. Polyhedron 1983, 2, 803.

In order to avoid pseudotetrahedral trisalkyne d^6 products we introduced a bis(diphenylphosphino)ethane chelate into the coordination sphere of the d^6 metal reagent. Using fac-W(CO)₃-(dppe)(acetone) as a precursor to fac-W(CO)₃(dppe)L derivatives we prepared several olefin complexes (L = maleic anhydride, diethyl maleate, diethyl fumarate) prior to attempting isolation of alkyne derivatives. During the course of our studies, Schenk and co-workers reported an extensive Group 6 olefin chemistry, including kinetics for the fac to mer rearrangements observed with electron deficient olefins in M(CO)₃(dppe)(η^2 -olefin) complexes.¹⁷

Addition of alkyne to fac-W(CO)₃(dppe)(acetone) in THF or toluene produced the desired alkyne adducts. These alkyne complexes are labile, and the solutions were cooled rapidly to 0 °C after formation to avoid decomposition or isomerization to vinylidene products. The alkyne ligands in the fac-W(CO)₃-(dppe)(η^2 -HC \equiv CR) series are easily displaced relative to alkynes in d⁴ octahedral complexes. For comparison fac-W(CO)₃-(dppe)(η^2 -HC \equiv CPh) immediately forms a 1:1 mixture of reagent and fac-W(CO)₃(dppe)(THF) upon dissolution in THF at room temperature, while (PEt₃)₂(OC)Br₂Mo(η^2 -HC \equiv CPh) resists alkyne substitution by phosphine reagents in refluxing toluene.

Other octahedral d⁶ complexes also have labile alkynes: $(\pi$ - C_5H_5)(OC)₂Mn(η^2 -RC=CR) complexes readily dissociate the alkyne ligand, 13 and Reger has noted that alkyne ligands in [(π - $C_5H_5)(OC)_2Fe(\eta^2-RC \equiv CR)]^+$ can be displaced by acetone. ^{14a} Geoffroy recently reported reactive d⁶ carbene–alkyne complexes. Low-temperature photolysis of (OC)₅W=C(OMe)Ph in the presence of alkynes produces spectroscopically observable alkyne adducts, but only the diphenylacetylene derivative was isolated as a solid. 30 Another example of a stable six-coordinate d^6 alkyne derivative, $(\pi - C_5H_5)(OC)_2Re(\eta^2-PhC = CPh)$, was recently reported.¹⁵ It seems that diphenylacetylene is a viable ligand in d⁶ complexes where alkyl or terminal alkyne analogues resist isolation. Numerous DMAC complexes also exist, 31 and W(CO)₂(dppe)-(DMAC)₂ provides another example where analogous alkyl or aryl alkynes do not yield a similar product. Clearly electronwithdrawing alkyne substituents favor retention of the alkyne in d⁶ metal coordination spheres.

Of the three terminal alkyne adducts isolated, only the phenylacetylene adduct, **2b**, isomerized cleanly to the vinylidene derivative, mer-W(CO)₃(dppe)=C=C(H)Ph.²⁸ Cationic [(π -C₅H₅)L₂Ru(η ²-HC=CR)]⁺ complexes readily isomerize to vinylidene ligands for alkyl, aryl, and ester R groups.^{27,32} Decomposition of **2a** or **2c** in THF at room temperature produced (dppe)W(CO)₄ as the only soluble carbonyl species and precipitated W(CO)₃(dppe)P(Ph)₂CH₂CH₂(Ph)₂P-W(CO)₃(dppe) as a pale yellow powder. These two products were also observed when internal alkynes were added to fac-W(CO)₃(dppe)(acetone) in thf. The kinetic stability of the alkyne adducts decreases as the steric bulk of the alkyne substituents increases, i.e., HC₂H is more stable than HC₂Ph, followed by HC₂(CH₂)₃CH₃.

Only the W(CO)₂(dppe)(DMAC)₂ complex withstood chromatographic purification; 2a-c decomposed on Florisil. The importance of electron-withdrawing substituents on alkyne ligands has been recognized for some time, and lowering the energy of the alkyne π_{\parallel}^* orbitals to enhance metal $d\pi$ backbonding has been discussed. For these d^6 octahedral complexes the carboxylate groups can provide additional stability by delocalizing the alkyne π_{\perp} electron pair away from the filled metal $d\pi$ orbital it confronts to decrease the antibonding $d\pi-\pi_{\perp}$ conflict.

Structure of W(CO)₂(dppe)(DMAC)₂. The geometry of 3 is nearly octahedral. The most interesting geometric features are the orientations of the two trans alkyne ligands relative to one another and relative to the P-W-CO vectors. The two alkynes are mutually orthogonal (92.1°), and each alkyne nearly eclipses one of the P-W-CO vectors (8.8 and 1.8°). The staggered ge-

ometry allows these two strong single-faced π -acid ligands to overlap different filled $d\pi$ orbitals. Orthogonal orientations for trans single faced π -acids or π -donors are common³³ and have been discussed theoretically.³⁴

The energy considerations which favor positioning alkyne $C \equiv C$ axes over equatorial metal-ligand bonds are more subtle. Both steric and electronic factors were invoked in a theoretical study of trans- $(H_2C \equiv CH_2)_2Mo(PH_3)_4$, but steric factors for the alkynes in 3 should favor locating the alkynes 45° off axis between the equatorial ligand positions. Repulsion of the filled d_{xy} metal orbital with the filled $C_2 \pi_{\parallel}$ donor orbital has been cited as an electronic term favoring the eclipsed geometry where π_{\parallel} encounters the filled $d_{x^2-y^2}\sigma$ bonding orbital which is less repulsive due to both overlap and energy factors than is d_{xy} . The same feature may be operative here.

Average values for the geometries of the alkynes in 3 will be employed for comparison with $[Ru(NH_3)_5(DMAC)][PF_6]_2$. The longer $C \equiv C$ distance (1.30 Å cf. 1.24 Å), the lower $\nu(C \equiv C)$ frequency (1895 cm⁻¹ cf. 1947 cm⁻¹), and the bend back angles (137 \pm 2° cf. 148 \pm 4°) for W(0) relative to Ru(II) reflect stronger metal alkyne bonding in the tungsten derivative. The M-C distances are not directly comparable, but if you estimate that Ru(II) is 0.17 Å smaller than W(0) based on average metal carbonyl M-C bond lengths, 37 the average 2.17 Å value for W-C also implies tighter binding than the 2.13 Å average Ru-C distance

The reason for belaboring this W/Ru comparison stems from the propensity for backbonding from the d^6 Ru(NH₃)₅²⁺ fragment, a premiere metal $d\pi$ donor. Expectations for two-electron alkyne bonding based on π_{\parallel} donation and π_{\parallel}^* acceptance are inadequate here. Donation from Ru(II) $d\pi$ to π_{\parallel}^* should weaken the C=C bond, but in fact the tungsten center clearly perturbs the free alkyne more substantially. We suggest that the $d\pi$ orbital extension and energy of Ru(NH₃)₅²⁺ which promote coordination of N₂³⁸ actually inhibit tight binding of alkynes due to increased ligand π_{\parallel} -metal $d\pi$ repulsion.

The individual contributions of two π effects—increased alkyne π_{\parallel}^* acidity vs. decreased alkyne π_{\perp} basicity—are difficult to probe spectroscopically. Luckily the orientation of the carboxylate groups directly addresses this question. The angle between the M-C₂ metal-alkyne plane and the CO2 carboxylate plane determines the distribution of ester delocalization between π_{\parallel}^* and π_{\perp} . The ester groups on C3 and C9 lie near the metal alkyne planes (4° and 14°, respectively) and overlap with π_{\perp} orbitals. The esters attached to C4 and C10, alkyne carbons above the PPh2 groups (see Figure 2) and more likely to encounter steric restrictions, form angles of 99° and 120° with their respective metal-alkyne planes. Thus the ester groups with greater rotational freedom choose to align with the π_{\perp} alkyne orbitals and decrease π_{\perp} -d π repulsion rather than to align with π_{\parallel}^* orbitals to enhance backbonding to π_{\parallel}^* . In $(\pi$ -C₅H₅)(OC)₂Re(PhC=CPh) the rings are canted less than 20° from the ReC₂ plane, again favoring overlap with π_{\perp} rather than $\pi_{\parallel}^{*}.^{15}$

Infrared Properties. The π -acidity of alkyne ligands is reflected in ν_{CO} frequencies. The average ν_{CO} frequency of fac-W(CO)₃-(dppe)(L) increases by more than 30 cm⁻¹ when THF is replaced by HC₂R. The order of π -acidity for HC₂R is R = Bu < H < Ph. Although the stoichiometry difference between 2 and 3 makes

⁽³⁰⁾ Foley, H. C.; Strubinger, L. M.; Targos, T. S.; Geoffroy, G. L. J. Am. Chem. Soc. 1983, 105, 3064.

^{(31) (}a) Bowden, F. L.; Lever, A. B. P. Organomet. Chem. Rev. 1968, 3, 227. (b) Sullivan, B. P.; Smythe, R. S.; Kober, E. M.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4701.

⁽³²⁾ Bruce, M. I.; Wallis, R. C. Aust. J. Chem. 1979, 32, 1471.

^{(33) (}a) Carmona, E.; Marin, J. M.; Poveda, M. L.; Atwood, J. L.; Rogers, R. D. J. Am. Chem. Soc. 1983, 105, 3014. (b) Angermund, K.; Grevels, F.-W.; Kruger, E. C.; Skibbe, V. Angew. Chem., Int. Ed. Engl. 1984, 23, 904. (c) Byrne, J. W.; Blaser, H. U.; Osborn, J. A. J. Am. Chem. Soc. 1975, 97, 3871. (d) Alvarez, R.; Carmona, E.; Marin, J. M.; Poveda, M. L.; Gutierrez-Puebla, E.; Monge, A. J. Am. Chem. Soc. 1986, 108, 2286.

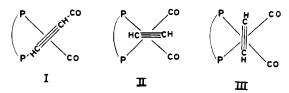
rez-Puebla, E.; Monge, A. J. Am. Chem. Soc. 1986, 108, 2286.
(34) (a) Bachmann, C.; Demuynck, J.; Veillard, A. J. Am. Chem. Soc. 1978, 100, 2366. (b) Rösch, N.; Hoffmann, R. Inorg. Chem. 1974, 13, 2656.
(35) Albright, T. A.; Hoffmann, R.; Thibeault, J. C.; Thorn, D. L. J. Am. Chem. Soc. 1979, 101, 2391.

Chem. Soc. 1979, 101, 3801.
(36) Henderson, W. W.; Bancroft, B. T.; Shepherd, R. E.; Fackler, J. P., Jr. Organometallics 1986, 5, 506.

^{(37) (}a) Lukehart, C. M. Fundamental Transition Metal Organometallic Chemistry; Brooks/Cole: Belmont, CA, 1985. (b) Seddon, K. R.; Seddon, E. A. The Chemistry of Ruthenium; Elsevier: 1984.

⁽³⁸⁾ Allen, A. D.; Bottomley, F. Acc. Chem. Res. 1968, 1, 360.

direct comparison of HC₂R and DMAC alkynes impossible, the average CO frequency of 2005 cm⁻¹ for 3 with only two carbonyl ligands is roughly 100 cm⁻¹ above the average of the facial alkyne complexes with three carbonyl ligands. This data reinforces the role of DMAC as a ligand comparable to CO in π -acid strength. 36,39 That ester substituents promote $d\pi$ to π_{\parallel} * backbonding and reduce π_{\perp} -d π conflicts is also evident in the much more positive oxidation potential of 3 relative to 2a-c. Note that Cooper and co-workers have reported two-electron reduction of $Cr(C_4Ph_4)(PhC_2Ph)(CO)_2$ to a diamon with retention of all lig $ands.^{10b} \\$


The W(CO)2(dppe)(DMAC)2 complex has a weak IR absorption at 1895 cm⁻¹ which we assign to the acetylenic C≡C stretch. This frequency falls in the $\nu_{C =\!\!=\!\! C}$ range common for d^6 octahedral alkyne complexes^{31,39} and is higher than values reported for Mo(IV) (1850-1870 cm⁻¹)^{3a} and Mo(II) (1790-1820)^{2c} DMAC complexes. This data is compatible with retention of more carbon-carbon triple bond character in d⁶ complexes than in cases where a vacant metal $d\pi$ orbital invites constructive donation from the C \equiv C π_{\perp} bonding orbital. We were unable to locate (C \equiv C) stretches in 2a-c; they may well lie under intense carbonyl bands in the 1850-1950-cm⁻¹ region.

fac-(dppe)(OC)₃W(η^2 -HC=CR) NMR Properties. Chemical shift values for acetylenic protons and carbons have been empirically correlated with alkyne π_{\perp} donation to molybdenum and tungsten. Terminal alkyne proton chemical shift values have been broadly categorized as four-electron donor alkynes (\approx 12–13 ppm), three-electron donor alkynes (\approx 10-11 ppm), and two-electron donor alkynes (≈7-8 ppm).4b The acetylenic hydrogens of 2a, 2b, and 2c appear at 5.78, 5.74, and 4.49 ppm, respectively. These shifts are well above formal two-electron donor alkynes in d4 $(\pi - C_5H_5)_2Mo(\eta^2 - HC \equiv CR)$ complexes⁴⁰ and are approaching free alkyne values (2-3 ppm) relative to more tightly bound alkyne ¹H chemical shifts.

Bound alkynes ¹³C chemical shifts vary over nearly 200 ppm;⁴¹ rough guidelines are four-electron donors (≈190-250 ppm), three-electron donors (\approx 130–170 ppm), and two-electron donors (≈100-120 ppm). The extreme lability of adducts 2a-c limited our ability to obtain ¹³C spectra, but the phenylacetylene complex 2b exhibited resonances at 98.2 and 88.7 ppm assigned as the bound alkyne carbons (cf. free HC≡CPh, 82.4 and 76.5 ppm). Even higher ¹³C chemical shifts have been reported for other d⁶ alkyne complexes.15

Alkyne coupling constants here also reflect weak metal-alkyne bonding. The ${}^{1}J_{CH}$ value of 231 Hz for **2b** lies nearly midway between free phenylacetylene (251 Hz) and complexed phenylacetylene in $W(CO)(S_2CNR_2)(RC_2H)$ (210 Hz)⁴² and W-(O)(S₂CNR)₂(RC₂H) (215 Hz).^{4b} For comparison the bridging HC=CH ligand in $W_2(O-t-Bu)_6(py)(\mu-C_2H_2)$ has a long C-C bond length of 1.44 Å and a $^1J_{CH}$ of 192 Hz.⁴³ The $^2J_{CH}$ coupling constant of 27 Hz in 2b is also large relative to ${}^2J_{\rm CH}$ values of 11 and 7 Hz seen in W(CO)(S₂CNR₂)₂(HC≡CH) and $W(O)(S_2CNR_2)_2(HC \equiv CH)$

The ¹H NMR spectrum of fac-W(CO)₃(dppe)(η^2 -HC \equiv CH) exhibits a triplet at 5.78 ppm (${}^{3}J_{HP} = 4 \text{ Hz}$) which integrates for two protons and remains unchanged down to -95 °C. Although a static structure with equivalent alkyne ends is possible as in III below, we favor rapid alkyne rotation to account for the single

signal observed (I or II). Extended Huckel molecular orbital calculations which favor alignment of the C=C linkage parallel to a OC-W-P vector produce a low calculated rotational barrier of 8.4 kcal/mol. The ${}^{3}J_{HP}$ of 4 Hz observed for 2a is small relative to the 11 and 12 Hz values in the unsymmetrical terminal alkyne complexes, 2b and 2c. The HC≡CPh and HC≡C-n-Bu complexes may well position the large alkyne substituent in the sterically less demanding site such that the only isomer which is substantially populated has a large ${}^{3}J_{HP}$. The parent acetylene derivative then places a proton in each environment, and the observed 4 Hz triplet coupling represents the average of one large and one small, probably of opposite sign, ${}^{3}J_{\mathrm{HP}}$ coupling constant.

W(CO)₂(dppe)(DMAC)₂ NMR Properties. Two singlets were observed for the four DMAC methoxy groups of 3 at room temperature. Heating caused coalescence, and only one methoxy signal was observed at 119 °C. These results are consistent with a static geometry at ambient temperatures which has two equivalent alkynes, with each alkyne having inequivalent ends (see Figure 2). Alkyne rotation with increasing temperature ultimately yields only one signal. The experimental barrier to alkyne rotation was calculated to be 17.7 kcal/mol for 3,44 quite close to the olefin rotational barrier in trans-W(CO)₄(η^2 -olefin)₂.⁴⁵

Summary. When will alkynes serve as simple two-electron donor olefin analogues? Electron-withdrawing substituents promote two-electron donation by delocalizing π_{\perp} electrons away from filled metal $d\pi$ orbitals. Single faced substituents, e.g., esters, are particularly well suited for these interactions, and numerous DMAC complexes fall under the 18-electron umbrella as olefin analogues. Other common two-electron donor alkyne ligands include PhC \equiv CPh and CF₃C \equiv CCF₃.

When will terminal alkyne ligands rearrange to vinylidenes? Octahedral d⁶ complexes containing a terminal alkyne ligand can eliminate the unfavorable π_{\perp} -d π four-electron conflict by isomerization to form a vinylidene ligand, and they do. Octahedral d⁴ or d² metal derivatives favor HC₂R as ligands relative to the M=C=CHR isomers.

When are terminal or dialkyl alkynes viable ligands? The relatively electron rich dialkylalkynes are good ligands and promote constructive π_{\perp} donation in d⁴ and d² octahedral derivatives. Isolation of dialkylalkyne complexes proved elusive in our efforts with d⁶ tungsten reagents, probably reflecting both electronic and steric problems. Likewise HC≡CH is a better ligand in high oxidation state metal complexes with vacant metal $d\pi$ orbitals.

Acknowledgment. This work was supported by NSF Grant CHE8521840 and PRF Grant 13547-AC3. We are grateful to Professor D. J. Hodgson for crystallographic assistance.

Supplementary Material Available: Tables of thermal parameters, complete bond distances and angles, and calculated hydrogen positions for 3 (8 pages); listings of observed and calculated structure factors for 3 (24 pages). Ordering information is given on any current masthead page.

⁽³⁹⁾ Sullivan, B. P.; Kober, E. M.; Meyer, T. J. Organometallics 1982, 1, 1011.

⁽⁴⁰⁾ Thomas, J. L. Inorg. Chem. 1978, 17, 1507.
(41) Templeton, J. L.; Ward, B. C. J. Am. Chem. Soc. 1980, 102, 3288.
(42) Ward, B. C.; Templeton, J. L. J. Am. Chem. Soc. 1980, 102, 1532.
(43) Chisholm, M. H.; Folting, K.; Hoffman, D. M.; Huffman, J. C. J.

Am. Chem. Soc. 1984, 106, 6794.

^{(44) (}a) Faller, J. W. Adv. Organomet. Chem. 1977, 16, 211. (b) Templeton, J. L. Adv. Chem. Ser. 1979, 173, 263.

⁴⁵⁾ Grevels, F.-W.; Lindeman, M.; Benn, R.; Goddard, R.; Krüger, C. Z. Naturforsch, B: Anorg. Chem., Org. Chem. 1980, B35, 1298.